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ABSTRACT

In this work, we apply recent research results in loop-
back frequency modulation (FM) to real-time parametric
synthesis of percussion sounds. Loopback FM is a vari-
ant of FM synthesis whereby the carrier oscillator “loops
back” to serve as a modulator of its own frequency. Like
FM, more spectral components emerge, but further, when
the loopback coefficient is made time varying, frequency
trajectories that resemble the nonlinearities heard in acous-
tic percussion instruments appear. Here, loopback FM is
used to parametrically synthesize this effect in struck per-
cussion instruments, known to exhibit frequency sweeps
(among other nonlinear characteristics) due to modal cou-
pling. While many percussion synthesis models incorpo-
rate such nonlinear effects while aiming for acoustic accu-
racy, computational efficiency is often sacrificed, prohibit-
ing real-time use. This work seeks to develop a real-time
percussion synthesis model that creates a variety of novel
sounds and captures the sonic qualities of nonlinear per-
cussion instruments. A linear, modal synthesis percussion
model is modified to use loopback FM oscillators, which
allows the model to create rich and abstract percussive hits
in real-time. Musically intuitive parameters for the percus-
sion model are emphasized resulting in a usable percussion
sound synthesizer.

1. INTRODUCTION

Synthesis of plates, membranes, and other percussion
instruments have been realized using several different
modeling techniques including modal synthesis (MS) [1],
the Functional Transformation Method (FTM) [2], finite
difference schemes (FDS) [3], and the digital waveguide
mesh (DWM) [4]. When real percussion instruments are
struck with a large velocity excitation, nonlinear effects
often result. Examples of these nonlinearities include the
cascade of energy from low to high frequency components
that give cymbals their characteristic sound and pitch
glides heard with gongs [5].

Many nonlinear percussion synthesis models are compu-
tationally expensive and may exhibit stability issues that
render them unsuitable for real-time synthesis on standard
computers [1–3]. An exception to this is described in [6],
where computationally heavy calculations are approx-
imated so that a nonlinear membrane model is able to
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Figure 1. The loopback FM percussion synthesis method.

simulate up to 1000 modes in real-time at a sampling rate
of 44.1kHz. For the percussion models in [7] and [2], the
most computationally expensive component is the nonlin-
ear calculation. Though the linear version of each model
can be efficiently computed, they produce sounds that are
less interesting than when nonlinearities are added. With
this understanding, one may like to use a linear system
to synthesize percussive sounds and approximate the
nonlinearities in an efficient and perceptually similar way.

For example, in [2], Avanzini and Marogna present
a sound synthesis simulation of a nonlinear, tension-
modulated percussion membrane. The model consists of a
linear portion and a nonlinear feedback section simulating
tension modulation. The linear model is computationally
efficient, but the nonlinear tension modulation requires a
feedback calculation for every sample, a computational
complexity that makes it unable to run in real time. In a
following paper [8], the nonlinear feedback calculation
is replaced with an efficient approximation that can be
calculated with the computational expense similar to that
of the linear model.
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Instead of striving for an acoustically accurate simulation
as some previous research has done, the aim here is to cre-
ate a percussion synthesizer that creates a variety of novel
sounds inspired by the dynamic and nonlinear phenomena
heard in percussion instruments. Similar to the strategy
used in [9], in which the pitch glide capabilities of a Duff-
ing oscillator are explored in the sound synthesis of a gong,
the work presented herein employs the nonlinear effects of
loopback FM, a technique initially presented in [10] and
further developed in [11]. Here, loopback FM oscillators
are used to enhance a modal synthesis (MS) of percussion
sound (see Figure 1). Loopback FM is a variant of FM
synthesis where the carrier signal is looped back to modu-
late its own frequency, resulting in complex spectra (much
like traditional FM), and interesting frequency trajectories
that resemble the nonlinearities observed in real percussion
instruments when the loopback coefficient is made time
varying.

In Section 2, we explore traditional MS and how it can
be used to synthesize percussive sounds. Section 3 re-
views loopback FM equations relevant to the current con-
text. Section 4 explains how traditional MS can be mod-
ified with loopback FM oscillators to create a wide vari-
ety of percussion sounds. Synthesis parameters are dis-
cussed in Section 5. Section 6 presents synthesis examples
of a marimba, tom tom, and circular plate. Concluding
thoughts and future research directions are considered in
Section 7.

2. PERCUSSION SYNTHESIS USING
TRADITIONAL MODAL SYNTHESIS

MS is a technique that resynthesizes the sound of an
acoustic object according to its acoustic modes or vibra-
tional patterns. The resonant frequencies of an acoustic
object arise through the sinusoidal motion of the object’s
modes. With traditional MS, each mode is synthesized
using a second-order resonating filter with a corresponding
frequency, initial amplitude, and decay [12].

To synthesize a percussive sound with MS, we begin with
a list of Nf modal frequencies fi, the values of which can
be obtained from acoustic experiments, spectral analysis
of recorded or physically modeled sounds (e.g. DWMs,
FDSs, etc), or calculated using theoretical equations.

Though MS traditionally models each frequency mode
with a second-order bandpass resonant filter with center
frequency fi, in this work the filters are replaced by si-
nusoidal oscillators of frequency (or center frequency if
frequency is time varying) fi. This allows for a straight-
forward comparison with the loopback FM version (also
implemented here with oscillators) than if traditional MS
bandpass filters had been used. A sinusoidal component
with carrier frequency ωc,i = 2πfi is expressed as si(n) =
sin(ωc,inT ) for time sample n and period T = 1/fs for
sampling rate fs. Each sinusoidal component is multi-
plied with an amplitude envelope wi(n). For percussive
sounds, wi(n) are typically exponentially decreasing en-
velopes with possibly different initial amplitudes and de-
cay rates for different modes. For example, for natural
sounding results, higher-frequency modes should be made
to decay more rapidly. Enveloped sinusoidal components
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Figure 2. Traditional MS for three modal frequencies.

are added together to form the MS output given by

ms(n) =

Nf−1∑
i=0

wi(n)si(n), (1)

the spectrum of which is shown in Figure 2 for Nf = 3.
MS is efficient and useful for recreating the sound of ob-

jects that consist of a small number of resonant frequency
modes. However, MS is a linear method and (1) is inca-
pable of capturing nonlinear effects. A simple modifica-
tion to the sinusoidal components of the MS framework
allows the system to create complex and dynamic sounds
reminiscent of nonlinear vibrations in percussion instru-
ments. In this modification, each sinusoidal component is
looped back to modulate its own carrier frequency, a syn-
thesis technique coined by the authors as “Loopback FM.”

3. LOOPBACK FM

Loopback FM is a self-modulated form of FM where
the oscillator loops back and modulates its own carrier
frequency according to a feedback coefficient. This differs
from Feedback FM [13], in which the output is used to
modulate its own initial phase. Loopback FM with a static
feedback coefficient, B, and feedback FM both create
peaks in the spectrum at integer multiples of a sounding
frequency. As described in [10], the difference between
the two synthesis methods is that with loopback FM, the
feedback coefficient B can be varied over time to create
both predictable pitch and spectral changes. Conversely,
feedback FM preserves pitch (in some contexts a desirable
feature) and only introduces spectral changes. As shown
in [11], loopback FM and its closed-form IIR approxima-
tion, an expression that resembles the transfer function of
a “stretched” allpass filter [14] but for which only the real
part is used as a time-domain signal, can be used to create
complex frequency spectra and pitch contours. Here, we
present the equations for loopback FM and its closed form
representation with static pitch and timbre followed by
their time-varying formulations, which can be used to
modulate timbre and sounding frequency.

3.1 Loopback FM Formulation

The loopback FM equation involves a carrier frequency
ωc = 2πfc where ωc is the angular frequency and fc is
the frequency in Hz, and a feedback parameter B, which
controls the output’s timbre and fundamental frequency.

The loopback FM equation for static B and time sample
n is

zc(n) = ejωcT (1+B<{zc(n−1)})zc(n− 1), (2)



with the initial condition zc(0) = 1 causing oscillation.
The output that we listen to is the real part of zc(n). The
fundamental frequency of this oscillator is not ωc but rather
ω0 = 2πf0, where f0 is the sounding frequency in Hz. The
relationship between ω0 and ωc is described by

ω0 = ωc

√
1−B2, −1 ≤ B ≤ 1, (3)

which shows that for ω0 to remain real, the value ofB must
be within the interval (−1, 1).

3.2 An Alternate Representation of the Loopback FM
Oscillator

The loopback FM oscillator zc(n) given in (2) with static
pitch and timbre may also be represented by the closed-
form representation

z0(n) =
b0 + ejω0nT

1 + b0ejω0nT
, (4)

which is similar to the transfer function of a “stretched” all-
pass filter used in [14]. In this synthesis context, (4) is used
as a time-domain signal that is a function of time sample
n, where b0 influences spectrum, ω0 specifies the sound-
ing frequency, and the sound is the real signal given by
<{z0(n)}. Parameters b0 and ω0 are related to the loop-
back FM feedback coefficient B. With (4), timbre and
pitch can be independently controlled, but this is not pos-
sible with loopback FM parameters ωc and B given in (2).
Coefficient b0 in z0(n) is related to loopback FM parame-
ter B through

b0 =

√
1−B2 − 1

B
. (5)

Note the singularity in (5) for B = 0. The relationship
between ω0 and ωc is shown in (3).

3.3 Time-varying B: Pitch and Timbre Modulation
with zc(n)

In (2), the feedback coefficient B can be varied over time
between (−1, 1) to create pitch glides and timbre varia-
tions over the length of the output signal. From (2), B is
replaced by B(n) to form

zc(n) = ejωcT (1+B(n)<{zc(n−1)})zc(n− 1) (6)

(3) reveals that when B is made to vary over time, ω0

also becomes time-varying. This creates a pitch trajectory
where the sounding frequency follows

ω0(n) = ωc
√

1−B2(n) (7)

3.4 Time-varying b0 and ω0: Pitch and Timbre
Modulation with z0(n)

Like (6), the parameters of H in (4) can be made to vary
over time to create pitch glides and spectral changes. Pa-
rameter b0 can be mapped to B(n) by

b0(n) =

√
1−B2(n)− 1

B(n)
(8)

and used in (9) to create spectral variations.

A desired pitch contour can be created by setting ω0(n) to
a pitch trajectory in the form of (7). Directly using ω0(n)
in place of ω0 in (4) will not result in the desired pitch
glide, and it is necessary to use a generalization of (4):

z0(n) =
b0(n) + ejΘ0(n)

1 + b0(n)ejΘ0(n)
. (9)

To understand Θ0(n), the instantaneous phase of the com-
plex exponential terms in (9), let ω0(t) be the continu-
ous counterpart of ω0(n) serving as the instantaneous fre-
quency, and Θ0(t) its integral with respect to time:

Θ0(t) =

∫ t

0

ω0(t)dt. (10)

Examples of the discrete-time form of (10) given by Θ0(n)
as used in (9), are shown in Section 5.5.

4. PERCUSSION SYNTHESIS WITH LOOPBACK
FM OSCILLATORS

The main steps involved in the loopback FM percussion
synthesis method are shown in Figure 1. The “Modal Syn-
thesis with Loopback FM” block consists of synthesizing
the vibrations of an abstract, nonlinear surface using MS
and (6) or (9) to produce output m(n). The “Commuted
Synthesis” block completes the percussion model by con-
volving a parametric excitation function and acoustic res-
onator impulse response with m(n).

4.1 Modal Synthesis with Loopback FM

Like the percussion MS technique described in Section 2,
the “Modal Synthesis with Loopback FM” block begins
with a list of modal frequencies fi of length Nf. Instead of
sinusoidal oscillators, Nf loopback FM oscillators are gen-
erated using the frequencies in fi. As described in [11],
the loopback FM oscillators can be expressed as resonat-
ing filters, though here, they are implemented as oscilla-
tors. This is similar to implementing MS with sinusoidal
oscillators as opposed to resonating filters as described in
Section 2. The loopback FM oscillator zc,i(n) has been
synthesized with carrier frequency ωc,i = 2πfi, where
subscript i means that ωc,i is set using the ith frequency
in fi.

The real part of each loopback FM oscillator is multiplied
with an amplitude envelope wi(n) and the enveloped loop-
back FM oscillators are summed to create the MS output

m(n) =

Nf−1∑
i=0

wi(n)<{zc,i(n)}. (11)

4.2 Commuted Synthesis

In [15], Smith efficiently models stringed musical in-
struments using commuted synthesis. This technique is
adapted here for percussion synthesis.

To complete the percussion instrument model, m(n)
must be excited by an excitation function, e(n), and
coupled to an acoustic resonator with impulse response
r(n). The equation to synthesize this relationship is

y(n) = e(n) ∗m(n) ∗ r(n) (12)



where ∗ indicates convolution. Because there is no depen-
dence between m(n), e(n), and r(n), m(n) can be com-
muted with r(n). The excitation and resonator impulse
response can be convolved to form an aggregate excitation
a(n) = e(n) ∗ r(n).

Aggregate excitations can be stored for several excita-
tion and resonator combinations. During run-time, a low-
latency convolution method, such as the one described in
[16], can be used to convolve a(n) with m(n) to form the
final percussion model output

y(n) = a(n) ∗m(n). (13)

In our syntheses, we use a variety of resonator impulse re-
sponses as presented in Section 6 along with two different
types of parametric excitations.

4.3 Excitations

The “Excitation” block in Figure 1 involves p(n), a
function that describes the vertical position of a drum-
stick/mallet hitting a surface at time n. The excitation
signal e(n) = p(n) − p(n − 1), relates to the velocity of
the drumstick/mallet and is convolved with the acoustic
resonator impulse response to form a(n). Here, we use
raised cosine envelopes and filtered noise bursts for p(n).
These signals are parametric and affect the resulting
output timbre.

4.3.1 Raised Cosine Envelopes

The raised cosine envelope has a single parameter: the
window length L. The equation for the excitation is

p(n) =

0.5

(
1− cos

(
2πn

L− 1

))
, for 0 ≤ n < L

0, for n ≥ L
(14)

4.3.2 Filtered Noise Bursts

The parameters for a filtered noise burst are noise burst du-
ration td and low and high frequency cutoffs for a bandpass
filter flow and fhigh. Examples in this paper use white noise
filtered by a second-order Butterworth bandpass filter.

5. MUSICAL PARAMETERS FOR LOOPBACK FM
PERCUSSION SYNTHESIS

Musical parameters for the loopback FM percussion syn-
thesis method are presented here along with their corre-
sponding variables and equations.

5.1 Timbre: Oscillators created with zc,i(n) or z0,i(n)

The MS oscillators can be synthesized using zc,i(n) or
z0,i(n). To use z0,i(n) oscillators, replace zc,i(n) in (11)
with z0,i(n). While both forms produce almost identical
results from fc = 0 Hz to around fc = 2500 Hz at a
sampling rate of 44.1 kHz, when fc > 2500 Hz, the ver-
sion that uses zc,i(n) becomes much noisier, due to alias-
ing. If the sampling rate is increased, the output is the
same whether the oscillators are created using zc,i(n) or
z0,i(n). Like FM, both zc,i(n) and z0,i(n) produce signals
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Figure 3. MS using zc,i(n) and z0,i(n) with low carrier
frequencies create almost identical results.
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Figure 4. MS with zc,i(n) creates noisier output than MS
with z0,i(n) for high carrier frequencies.

that are not bandlimited. With loopback FM, a large fc
means a large feedback amount, which can mean increased
bandwidth and aliasing, similar to how a large index of
modulation corresponds to a wider bandwidth in traditional
FM. Figure 3 shows that the zc,i(n) and z0,i(n) MS os-
cillators produce similar spectrograms when the lowest of
3 modal frequencies is set to a low carrier frequency of
fc = 2000Hz. Vastly different spectrograms are produced
when the lowest of the 3 modal frequencies is set to a
higher carrier frequency of fc = 4000 Hz as shown in Fig-
ure 4. The MS using zc,i(n) synthesizes a noisier output
and can be used to create cymbal- and crash-like sounds as
shown in Section 6.3.

5.2 Timbre: B and b0

Loopback FM parameter B controls timbre in (2) while
z0(n) parameter b0 affects timbre in (4). For carrier fre-
quencies below 2500Hz, the frequency components cre-
ated using (2) or (4) are almost identical and are spaced at
integer multiples of f0. When B = 0 or b0 = 0, there are
no sidebands and the output is a pure tone. As B and b0
increase towards 1 (or decrease towards −1), more side-
bands appear and the timbre brightens. The sidebands log-
arithmically decrease in amplitude for each multiple of f0.
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Figure 5. The loopback FM magnitude spectrum. Fre-
quency components occur at integer multiples of the
sounding frequency, 300Hz, and the amplitude of the com-
ponents decreases logarithmically.

Figure 5 is a plot of the magnitude spectrum for a loopback
FM oscillator with static B = 0.9 and f0 = 300Hz. The
sounding frequency can be seen as a peak at 300Hz and the
sidebands are spaced at integer multiples of 300Hz with a
logarithmic decrease.

(5) explains the relationship between b0 and B, though
as described in Section 5.1, at high carrier frequencies, the
output from (2) will differ from that of (4).

5.3 Time-varying Timbre: B(n) and b0(n)

With (6), B(n) affects the time-varying timbre and sound-
ing frequency. When using (9), b0(n) controls the time-
varying timbre, independent of pitch. As in the static case,
as B(n) and b0(n) near 0, the output approaches a pure
tone, while as B(n) and b0(n) approach 1 and −1, the
number of sidebands created by the oscillators increases
and the timbre becomes brighter.

In Figure 6, B(n) = gn where g = 0.9999, b0(n) is ob-
tained according to (8), and amplitude envelopes are the
same for all modal frequencies. The top and middle plots
in Figure 6 compare spectrograms for a static timbre of
b0 = −0.6312 with (4) and a time-varying timbre where
b0(n) is used with (9). The sidebands in the top plot are
the same over the course of the signal, but the higher fre-
quency sidebands die out over time in the middle plot as
b0(n) increases from −1 to 0. Time-varying timbre be-
tween (6) and (9) can be compared using the middle and
bottom plots. In the bottom plot, time-varying B(n) cre-
ates timbre and pitch variation as n increases. In the mid-
dle plot, b0(n) changes the timbre without affecting the
frequency trajectories.

5.4 Sounding Frequency: ω0

For Eqs. 2 and 4, the sounding frequency can be controlled
with ω0 = 2πf0. For a desired ω0 with (2), one would use
(3) and either 1) set B to a desired value and solve for ωc
or 2) set ωc and solve for B.

Because the modal frequencies for percussive instru-
ments are often inharmonic, the sounding frequency for
percussion synthesis is not clearly defined. With MS using
z0,i(n) oscillators, ω0,i = 2πfi is used to set the sounding
frequencies of individual oscillators. For MS using zc,i(n)
oscillators, the carrier frequencies can be set to the modal
frequencies: ωc,i = 2πfi or the sounding frequencies can
be set to the modal frequencies: ω0,i = 2πfi. According
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Figure 6. Static and time-varying timbre with various MS
oscillators. Middle: b0(n) with (9) modulates timbre in-
dependently of pitch. Bottom: B(n) with (6) affects both
timbre and pitch.

to (3), when B = 0, ω0 = ωc, and setting either to the
modal frequencies would create the same output. When B
is large and close to 1 or −1, ω0 will be a lower frequency
than ωc. This means that using ωc,i = 2πfi produces
lower sounding frequencies while setting ω0,i = 2πfi
produces higher sounding frequencies, which will most
likely produce aliasing effects, especially with (2), as
described in Section 5.1. Figure 7 demonstrates that when
B is close to 1, ωc,i = 2πfi creates a toned output while
ω0,i = 2πfi creates a noisy output as higher frequencies
contribute to extreme aliasing effects.

5.5 Pitch Glides: B(n) and ω0(n)

With (6), a pitch glide can be added by varying B(n) over
time. This also produces timbral changes. A pitch glide
can be created with (9) by varying ω0(n) over time as de-
scribed in Section 3.4. To modify the pitch independently
of timbre with (9), b0 should be held constant.

As described in Section 5.1, differences between (6) and
(9) can be observed when ωc is high, and this effect oc-
curs with pitch glides. Figure 8 shows the high carrier fre-
quency difference for a pitch glide over three modal fre-
quencies using MS with (6) and (9). The pitch glide is
created with B(n) = 0.9999n, so timbre also changes. At
higher carrier frequencies, MS with Eq. 6 creates noise-
like output for the first 100ms and more spectral compo-
nents than MS with Eq. 9 from 100−250ms. From 300ms
through the remainder of the signal, the frequency compo-
nents are more similar.

Pitch glides are constrained to use exponential and linear
B(n) functions in the synthesis examples presented in this
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Figure 7. Loopback FM MS spectrograms for ωc,i = 2πfi
(top) and ω0,i = 2πfi (bottom). The top and bottom sig-
nals are generated using the same 3 modal frequencies with
B = 0.9.
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Figure 8. MS using (6) vs. (9) at high carrier frequencies
with a pitch glide produce different spectrograms for the
first 250ms. The lowest oscillator frequency uses fc =
4000Hz.

research. This restriction onB(n) creates natural sounding
pitch glides and allows us to draw parallels between the
zc(n) and z0(n) forms.

5.5.1 Pitch Glides with Exponential B(n)

For the exponential case, B(n) = gn can be used directly
in (6) to produce a pitch glide. When using (9) for a pitch
glide, Θ0(n) can be found using B(n) = gn along with
Equations 7 and 10 which, as shown in [11], is given by

Θ0(n) =
ωc

log(g)
(
√

1− g2n − tanh−1(
√

1− g2n)) + C

(15)
where C is the constant of integration.

5.5.2 Pitch Glides with Linear B(n)

For the linear case, B(n) = kn + l produces a pitch glide
when used with (6). (9) uses the instantaneous phase given
by

Θ0(n) =
ωc

2k
((kn+ l)

√
1− (kn+ l)2

+ sin−1(kn+ l)) + C (16)

5.6 Decay Time: wi(n)

The decay time for the percussion signal can be con-
trolled through the amplitude envelopes wi(n). A
natural sounding way to set these envelopes is to model
them as exponentially decreasing envelopes over time:
wi(n) = A0e

−n/τ , with different initial amplitude values
A0, as shown in Figure 10, and/or different decay rates τ .

5.7 Commuted Synthesis Parameters

5.7.1 Attack Sharpness: Raised Cosine Envelopes

With raised cosines envelopes, small values of L create
sharper sounding attacks, while longer values ofL increase
the presence of low frequencies in the output and result
in bass-heavy sounds. Intuitively, L is proportional to the
mass of a hammer or mallet used to excite a drum head: a
longer L means a hammer/mallet with greater mass.

5.7.2 Attack Noisiness: Filtered Noise Bursts

For filtered noise burst excitations, a longer noise burst td
and higher bandpass frequency cutoff fhigh will create a
noisier attack. flow and fhigh should be tuned to filter out
undesired frequencies. For example, for a high pitched per-
cussion sound, the lower frequencies could be filtered out
from the noise burst by setting flow to a higher frequency.

5.7.3 Timbre: Acoustic Resonator Impulse Response r(n)

The acoustic resonator filters the synthesis output, so the
timbre can be further shaped by the frequencies present in
r(n). For an expansive and large sound, a room impulse re-
sponse with a long T60 may work well while for a shorter,
tuned sound, the impulse response of a small, acoustic tube
model could be used.

6. SYNTHESIS EXAMPLES

While the loopback FM percussion synthesis method is
capable of creating a variety of percussive sounds, this
section covers three sound synthesis examples that use
modal frequencies from [17]: the marimba, tom tom,
and circular plate. Although these modal frequencies
are associated with real, physical instruments, the aim of
this synthesis is not to recreate the naturally occurring
sounds. Rather, we seek to synthesize many different
types of sounds with nonlinearities similar to those that
occur in percussion instruments. For these examples,
differences between percussion synthesis using tradi-
tional and loopback FM MS are compared for the same
modal frequencies, decaying amplitude envelopes, and
commuted synthesis parameters. Sound examples can be
found at
http://musicweb.ucsd.edu/˜trsmyth/
other/percussionSynthesisLoopbackFM.html.

6.1 Marimba

Figure 9 compares the spectrograms of a marimba modeled
as a bar with two free ends using traditional and loopback
FM MS. This example sets ω0,i to seven modal frequencies

http://musicweb.ucsd.edu/~trsmyth/other/percussionSynthesisLoopbackFM.html
http://musicweb.ucsd.edu/~trsmyth/other/percussionSynthesisLoopbackFM.html
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Loopback FM MS of marimba with raised cosine excitation
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Figure 9. Traditional (top) vs. Loopback FM MS (bottom)
using the modal frequencies of an ideal bar with two open
ends. The excitation is a raised cosine and the acoustic
resonator is an ideal tube synthesized using traditional MS.
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Figure 10. The marimba synthesis amplitude envelopes
are decaying exponentials. The initial amplitude of the en-
velopes is inversely proportional to the modal frequency of
the oscillator that is paired with the envelope.

calculated as

fi =

{
440, for i = 0

440 (2i+3)2

3.0112 , otherwise
(17)

The amplitude envelopes are decaying exponentials where
initial amplitudes decrease exponentially from 1 for the
first (lowest) modal frequency to 0.01 for the seventh
(highest) modal frequency. Figure 10 is a plot of the
amplitude envelopes used for this marimba example.
This example is created using zc,i(n) oscillators with
an 8-sample length raised cosine excitation and a pitch
glide created by setting B(n) = 0.9999n. The acoustic
resonator is an ideal, open-closed tube synthesized using
traditional MS. Compared to the signal generated using
traditional MS, the signal created using loopback FM MS
has more frequency components and a clearly increasing
pitch glide.

6.2 Tom Tom

The spectrogram of a tom tom synthesized using tradi-
tional vs. loopback FM MS is shown in Figure 11. The
modal frequencies used to synthesize the tom tom are

fi = 142 · [1, 2.15, 3.17, 3.42, 4.09, 4.80, 4.94] (18)

The amplitude envelopes are the same as those used for
the marimba as shown in Figure 10. The synthesis uses

MS of tom tom with filtered noise burst
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Loopback FM MS of tom tom with filtered noise burst
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Figure 11. Traditional (top) vs. Loopback FM MS (bot-
tom) using the modal frequencies of a tom tom. The exci-
tation is a filtered noise burst and the acoustic resonator is
a taiko drum recording.

z0,i(n) oscillators, b0 = −0.9, and the pitch glide is cre-
ated linearly increasing B from 0.55 to 0.91. The excita-
tion is a 0.05 second long noise burst filtered with a 2nd-
order Butterworth bandpass filter with frequency cutoffs at
120Hz and 4000Hz. The acoustic resonator is a recording
of a taiko drum retrieved from freesound.org. In Fig-
ure 11, there is more high frequency energy for the loop-
back FM MS than for the traditional MS, especially in the
beginning of the signal.

6.3 Circular Plate

In Figure 12, loopback FM MS of a simply-supported cir-
cular plate is compared to traditional MS of the same cir-
cular plate. The modal frequencies used are

fi = f0·[1, 2.80, 5.15, 5.98, 9.75, 14.09, (19)
14.91, 20.66, 26.99]

where f0 = 0.2287cL(h/a2) for plate thickness
h = 0.005m, plate radius a = 0.09m, and longitudinal
wave speed cL =

√
E/ρ(1− ν2) with Young’s modulus

E = 2 · 1011N/m2, plate density ρ = 7860kg/m3, and
Poisson ratio ν = 0.3. The amplitude envelopes are
decaying exponentials over time. The initial amplitude
of these envelopes decreases exponentially as frequency
increases from 1 for the lowest modal frequency to 0.5 for
the highest modal frequency. Using zc,i(n) oscillators, a
slight upwards pitch glide is created by linearly changing
B(n) from 0.91 to 0.90 over the course of the signal. The
excitation is an 8-sample long raised cosine envelope and
the acoustic resonator is a room impulse response retrieved
from echothief.com. In this example, the drastic
aliasing effects in loopback FM MS are used to create an
extremely “noisy” signal. Perceptually, the traditional MS
output sounds like a clean bell sound, while the loopback
FM MS sounds more like a noisy, struck cymbal.

7. CONCLUSIONS

This work has presented a real-time method to synthesize
novel, abstract percussion sounds using MS with loopback

freesound.org
echothief.com
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Loopback FM MS of circular plate with raised cosine excitation
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Figure 12. Traditional (top) vs. Loopback FM MS (bot-
tom) using the modal frequencies of a simply-supported
circular plate. The excitation is a raised cosine, and the
resonator is a room impulse response.

FM oscillators. Loopback FM creates complex spectra and
pitch glides similar to the nonlinear effects observed in
existing percussion instruments. The synthesis technique
allows for parametric control of musical dimensions in-
cluding sounding frequency, decay time, timbre, and pitch
glide. Synthesis examples using the modal frequencies of
a marimba, tom tom, and circular plate are examined.

A future research direction involves investigating the
aliasing that occurs with large carrier frequencies for both
loopback FM and its closed form expression. Another
research interest is to explore other methods of creating
nonlinearities in oscillators and using these methods with
loopback FM to create an even wider range of percussion
sounds.
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